
Hybrid Parallelism

E. Wes Bethel

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

David Camp

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

Hank Childs

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

Christoph Garth

University of Kaiserslautern,
Kaiserslautern, Germany.

Mark Howison

Brown University,
Providence, RI, USA, 02912.

Kenneth I. Joy

University of California, Davis,
Davis, CA, USA, 95616.

David Pugmire

Oak Ridge National Laboratory,
Oak Ridge, TN, USA, 37831.

December 2012

1

Acknowledgment

This work was supported by the Director, Office of Science, Office and Advanced Scientific Com-
puting Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Some of the research in this work used resources of the National Energy Research Scientific Com-
puting Center, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

2

Abstract

Hybrid parallelism refers to a blend of distributed- and shared-memory parallel programming
techniques within a single application. This report presents results from two studies. They aimed
to explore the thesis that hybrid parallelism offers performance advantages for visualization codes
on multi-core platforms. The findings show that, compared to a traditional distributed-memory
implementation, the hybrid parallel approach uses a smaller memory footprint, performs less
interprocess communication, has faster execution speed, and, for some configurations, performs
significantly less data I/O.

Preface

The material in this technical report is a chapter from the book entitled High Performance
Visualization—Enabling Extreme Scale Scientific Insight [3], published by Taylor & Francis,
and part of the CRC Computational Science series.

3

Contents

1 Introduction 5

2 Hybrid Parallelism and Volume Rendering 6
2.1 Background and Previous Work . 6
2.2 Implementation . 6

2.2.1 Shared-Memory Parallel Ray Casting . 7
2.2.2 Parallel Compositing . 8

2.3 Experiment Methodology . 8
2.4 Results . 9

2.4.1 Initialization . 9
2.4.2 Ghost Data/Halo Exchange . 9
2.4.3 Ray Casting . 9
2.4.4 Compositing . 11
2.4.5 Overall Performance . 12

3 Hybrid Parallelism and Integral Curve Calculation 15
3.1 Background and Context . 15
3.2 Design and Implementation . 16

3.2.1 Parallelize Over Seeds . 16
3.2.2 Parallelize Over Blocks . 17

3.3 Experiment Methodology . 18
3.3.1 Factors Influencing Parallelization Strategy 18
3.3.2 Test Cases . 18
3.3.3 Runtime Environment . 18
3.3.4 Measurements . 18

3.4 Results . 19
3.4.1 Parallelization Over Seeds . 19
3.4.2 Parallelization Over Blocks . 19

4 Conclusion and Future Work 20

4

1 Introduction

Figure 1: 46082 image of a combustion simulation result, rendered by hybrid parallel MPI+pthreads
implementation running on 216,000 cores of the JaguarPF supercomputer. Image source: Howison
et al., 2011 [15]. Combustion simulation data courtesy of J. Bell and M. Day (LBNL).

A distributed-memory parallel computer is made up of multiple nodes, with each node con-
taining one or more cores. Each instance of a parallel program is called a task (or sometimes a
Processing Element or PE). A pure distributed-memory program has one task for each core on
each node of the computer. This is not necessary, however. Hybrid parallel programs have fewer
tasks per node than cores. They make use of the remaining cores by using threads, which are
lightweight programs controlled by the task. Threads can share memory amongst themselves
and between the main thread associated with the task; allowing for optimizations that are not
possible with distributed-memory programming. For example, consider a distributed-memory
parallel computer with eight quad-core nodes. A pure distributed-memory program would have
thirty-two tasks running and none of these tasks would make use of shared-memory techniques
(although some cores would reside on the same node). A hybrid configuration could have eight
tasks, each running with four threads, sixteen tasks, each running with two threads, or even
configurations where the number of tasks and threads per node varies.

This report defines and uses the following terminology and notation. Traditional parallelism,
or PT , refers to a design and implementation that uses only MPI for parallelism, regardless of
whether the parallel application is run on a distributed- or shared-memory system. Hybrid par-
allelism, or PH , refers to a design and implementation that uses both MPI and some other form
of shared-memory parallelism like POSIX threads [5], OpenMP [4], OpenCL [13], CUDA [10],
and so forth.

The main focus of this report is to present results from two different experiments within
the field of high performance visualization that aim to study the extent to which visualization
algorithms can benefit from hybrid parallelism when applied to today’s largest data sets and on
today’s largest computational platforms. The studies presented in this report use a PHdesign,

5

whereby each MPI task will in turn invoke some form of shared-memory parallelism on multi-core
CPUs and many-core GPUs.

One experiment studies a hybrid parallel implementation of ray casting volume rendering
at extreme-scale concurrency. The other studies a hybrid parallel implementation of integral
curve computation using two different approaches to parallelization. The material in this re-
port consolidates information from earlier publications on hybrid parallelism for volume render-
ing [14, 15] and streamline/integral curve computations [7, 22]. Both of these studies show that
a PH implementation runs faster, uses less memory, and performs less communication and data
movement than its PT counterpart. In some cases, the difference is quite profound, and reveals
many insurmountable obstacles if PT paths continue to be used on exascale-class computational
platforms.

There are several factors that influence scalability at extreme levels of concurrency. The
cost of initialization itself may become a limiting factor. One of the studies in this report
reveals that there is a cost, in terms of memory footprint, associated with each MPI task that
grows at a nonlinear rate with the concurrency level. Another factor is the overhead associated
with synchronizing processes. Traditional message-based approaches that have worked well in
distributed-memory parallel environments may prove to be too costly when there are hundreds
to thousands of cores per chip. More generally, communication patterns and associated overhead
may likely suffer from similar scalability limits. Load balancing, which refers to the process of
having each of the individual processes perform about the same amount of work, has been the
subject of much research over the years in distributed-memory parallel environments. Adding
in the complexity of scores, hundreds to thousands of cores per chip, adds to that complexity,
which, in turn, can also limit scalability.

2 Hybrid Parallelism and Volume Rendering

2.1 Background and Previous Work

Volume rendering is a common technique used for displaying 2D projections of 3D sampled
data [11, 16] and it is computationally, memory, and data I/O intensive. The study focuses
on an PH implementation at extreme concurrencies in order to take advantage of multi- and
many-core processor architectures.

This study’s PH implementation makes use of a design pattern common in many parallel
volume rendering applications that use a mixture of both object- and pixel-level parallelism [2,
17, 18, 25]. The design employs an object-order partitioning to distribute source data blocks to
processors where they are rendered using ray casting [11,16,23,27]. Then, within a processor, an
image-space decomposition, similar to Nieh and Levoy [19], is used to allow multiple rendering
threads to cooperatively generate partial images that are later combined, via compositing, into
a final image [11, 16, 27]. This design approach, which uses a blend of object- and pixel-level
parallelism, has proven successful in achieving scalability and tackling large data sizes.

The most substantial difference between the work in this study and previous work in parallel
volume rendering is the exploitation of PH parallelism at an order of magnitude of greater
concurrency than any previous studies. This work also performs an in-depth study to better
understand scalability characteristics as well as potential performance gains of the PHapproach.

2.2 Implementation

The study’s parallel volume rendering implementation uses a design pattern similar to that in
previous works (e.g., see [2,17,18,25]). Given a source data volume S and n parallel tasks, each
task reads in 1/n of S, performs ray casting volume rendering on this data subdomain to produce
a set of image fragments, and, then participates in a compositing stage in which fragments are
exchanged and combined into a final image. The completed image is gathered to the root task
for display or I/O for storage. Figure 2 provides a block-level view of this organization.

6

Mesh Data

Mesh Data
Only performed once

Performed for each
render

Fragments

Pixels

Image

Read

Raytracing

Create
threads

Trace
rays

Collective
ghost data
exchange

Collective
fragment
exchange

End
threads

Raytracing (hybrid only)

Compositing

Image
Collection

Create
Ghost Data

~ ~ ~ ~

Figure 2: PHvolume rendering system architecture. Image courtesy of Mark Howison, E. Wes
Bethel, and Hank Childs (LBNL).

The PT implementation is written in C/C++, using the MPI [24] library. The portions of the
implementation that are shared-memory parallel are written using a combination of C/C++ and
either POSIX threads [5], OpenMP [8], or CUDA (version 3.0) [20] so that the study is comparing
three PH implementations referred to as hybrid/pthreads, hybrid/OpenMP, and hybrid/CUDA.

The PT and PH implementations differ in several key respects. First, the ray casting volume
rendering algorithm is a serial process in the PT implementation; this serial process is replicated
across N processors. In contrast, in the PH implementation, the ray casting algorithm runs in
a shared-memory parallel fashion rather than as a serial process. Second, the communication
topology in the compositing stage differs slightly between the PT and PH implementations—the
details of which are the subject of Section 2.2.2. The third difference is how data is partitioned
across the tasks. In the PT implementation, each task loads and operates on a disjoint block of
data. In the PH implementation, each task loads a disjoint block of data and each of its worker
threads operate in parallel on that data using an image-parallel decomposition [19].

2.2.1 Shared-Memory Parallel Ray Casting

The implementation of ray casting volume rendering code follows Levoy’s method [16]: first,
compute the intersection of a ray with a data block, and then, compute the color at a fixed step
size along the ray through the volume. All colors along the ray are composited front-to-back
using the “over” operator [21]. Output consists of a set of image fragments that contain an
x, y pixel location; R,G,B, α color; and a z-coordinate. The z-coordinate is the location in eye
coordinates, where the ray penetrates the block of data. Later, these fragments are composited
in the correct order to produce a final image.

Each PT task invokes a serial ray caster that operates on its own disjoint block of data. Since
this code is processing structured rectilinear grids, all data subdomains are spatially disjoint,
and the z-coordinate for sorting during the subsequent composition step is the ray’s entry point
into the data block.

In contrast, the PHtasks invoke a ray caster with shared-memory parallelism that consists
of T threads, executing concurrently to perform the ray casting on a shared block of data. As in

7

Nieh and Levoy [19], the authors use an image-space partitioning: each thread is responsible for
ray casting a portion of the image. In the pthreads and OpenMP ray casting implementations,
the image-space partitioning is interleaved, with the image divided into many tiles that are
distributed amongst the threads. The CUDA ray casting implementation is slightly different
because of the data-parallel nature of the language. The image is treated as a 2D CUDA grid,
which is divided into CUDA thread blocks. Each thread block corresponds to an image tile, and
the individual CUDA threads, within each block, are mapped to individual pixels in the image.
There are a number of CUDA-centric issues and considerations with this implementation. For
more information, see Howison et al. 2011 [15].

2.2.2 Parallel Compositing

In comparison to parallel image compositing methods, this particular implementation uses an
approach that is somewhat different. Compositing begins by partitioning the pixels of the final
image across the tasks. Next, an all-to-all communication step exchanges each fragment from
the task where it was generated in the ray casting phase to the task that owns the region of the
image in which the fragment lies. This exchange is done using an MPI Alltoallv call. After
the exchange, each task then performs the final compositing for each pixel, in its region of the
image, using the “over” operator [21]. The final image is then gathered on the root task. (See
the original studies for additional details [14, 15].)

The PHand PT compositing differ in one key way that results in fewer, but larger messages
in the PH implementation, which in turn, results in PHhaving a better performance. In both
the PHand PT implementations, each of the MPI tasks will participate in the fragment exchange
communication process. Because there are far fewer MPI tasks in the PH implementation, those
MPI tasks will exchange fewer and larger messages. In the PH implementation, one thread
gathers fragments from all other threads in the shared-memory parallel CPU or GPU and
performs the communication rather than having all threads participate in the communication.
The overall effect of this design choice is an improvement in communication characteristics, as
presented later in Section 2.4.4.

2.3 Experiment Methodology

The study’s methodology is designed to test the hypothesis that a PH implementation exhibits
better performance and resource utilization than the PT implementation.

The study uses two systems, a large Cray XF5 system, JaguarPF, located at Oak Ridge
National Laboratory, and a large GPU cluster, Longhorn, located at the Texas Advanced Com-
puting Center. In 2009, JaguarPF was ranked number one on the list of TOP500 fastest super-
computers with a peak theoretical performance of 2.3 petaflops [26]. Each of its 18,688 nodes
has two sockets, and each socket has a six-core 2.6GHz AMD Opteron processor, for a total
of 224,256 compute cores. With 16GB per node (8GB per socket), the system has 292TB of
aggregate memory and roughly 1.3GB per core.

Longhorn has 256 host nodes with dual-socket, quad-core Intel Nehalem CPUs and 24GB of
memory. They share 128 NVIDIA OptiPlex 2200 external quad-GPU enclosures for a total of
512 FX5800 GPUs. Each GPU has a clock speed of 1.3GHz, 4GB of device memory, and can
execute 30 CUDA thread blocks concurrently. The study treats the FX5800 as a generic “many-
core” processor with a data-parallel programming model (CUDA) that serves as a surrogate for
anticipating what future many-core clusters may look like. In terms of performance, the study
positions the FX5800 relative to the Opteron in terms of its actual observed runtime for this
particular application rather than relying on an a priori architectural comparison.

The study includes three types of scalability experiments:

• strong scaling, in which the image size is fixed at 46082 and the data set size at 46083

(97.8 billion cells) for all concurrency levels;

• weak-data set scaling, with the same fixed 46082 image, but also, a data set size in-
creasing with concurrency up to 230403 (12.2 trillion cells) at 216,000-way parallel; and

8

• weak scaling, in which both the image and the data set increase in size up to 230402 and
230403, respectively, at 216,000-way parallel.

Note that at the lowest concurrency level, all three cases coincide with a 46082 image and
46083 data set size. The source data for this experiment consisted of an output from a com-
bustion simulation code that aims to perform a laboratory-scale modeling of a flame. Figure 1
shows a sample image produced by these runs. (See the original studies for additional details
of the experimental methodology configuration, including details of the source data used in the
experiment, how data is partitioned across processors on each platform, and data/image sizes
for each of the three scaling experiments [14,15].)

2.4 Results

The study compares the cost of MPI runtime overhead and corresponding memory footprint in
Section 2.4.1; the absolute amount of memory required for data blocks and ghost (halo) exchange
in Section 2.4.2; the scalability of the ray casting and compositing algorithms in Section 2.4.3
and Section 2.4.4; and the communication resources required during the compositing phase in
Section 2.4.4. Section 2.4.5 concludes with a comparison of results from the six-core CPU system
and the many-core GPU system to understand how the balance of PHvs. PT parallelism affects
the overall performance.

2.4.1 Initialization

Because there are fewer PHtasks, they incur a smaller aggregate memory footprint for the MPI
runtime environment and program-specific data structures that are allocated per task. Table 1
shows the memory footprint of the program as measured directly after calling MPI Init and
reading in command-line parameters.1 Memory usage was sampled only from tasks 0 through
6, but those values agreed within 2% of each other. Therefore, the per-task values reported in
Table 1 are from task 0 and the per-node and aggregate values are calculated from the per-task
value.2

The PT implementation uses twelve MPI tasks per node while the PHone uses only two. The
PH implementation’s two MPI tasks per node each go six-way parallel, so that all cores on both
node’s multi-core CPUs are fully occupied in both the PHand PT implementations. At a 216,000-
way concurrency, the runtime overhead per PT task is more than 2× the overhead per PHtask.
The per-node and aggregate memory usage is 6× larger for the PT implementation, because it
uses 6× as many tasks. Thus, the PT implementation uses nearly 12× as much memory per-node
and in-aggregate than the PHone for initializing the MPI runtime at a 216,000-way concurrency.

2.4.2 Ghost Data/Halo Exchange

Two layers of ghost data are required in the ray casting phase: the first layer is for trilinear
interpolation of sampled values, and the second layer is for computing the gradient field using
central differences (gradients are not precomputed for this data set). In the PHconfiguration,
since the source data is partitioned into fewer, larger blocks, the PHversion requires less exchange
and storage of ghost data by roughly 40% across all concurrency levels and for both strong and
weak scaling compared to the PT version—Figure 3 illustrates these results.

2.4.3 Ray Casting

All of the scaling studies demonstrate good scaling for the ray casting phase, since no message
passing is involved (Fig. 4). The authors used trilinear interpolation for data sampling along

1The authors collected the VmRSS, or “resident set size,” value from the /proc/self/status interface.
2In Table 1, the value in the Per Task column multiplied by twelve, the number of cores per node, which consists

of two, six-core CPUs, does not always equal the value in the Per Node column due to the round-off error that results
from presenting values as integral numbers of MB or GB.

9

Table 1: Comparison of memory usage at MPI Initialization for PHand P Tvolume rendering im-
plementations. At 216,000-way concurrency, the P T implementation uses twelve times the memory
of the PHversion.

CPU
cores

Implementa-
tion

Tasks Per Task
(MB)

Per Node
(MB)

Agg.
(GB)

1728 PH 288 67 133 19

1728 P T 1728 67 807 113

13824 PH 2304 67 134 151

13824 P T 13824 71 857 965

46656 PH 7776 68 136 518

46656 P T 46656 88 1055 4007

110592 PH 18432 73 146 1318

110592 P T 110592 121 1453 13078

216000 PH 36000 82 165 2892

216000 P T 216000 176 2106 37023

the ray as well as a Phong-style shader for these runs and timings. The final ray casting time
is essentially the runtime of the thread that takes the most integration steps. This behavior
is entirely dependent on the view. The study’s approach, which is aimed at understanding
“average” behavior, uses ten different views and reports an average runtime.

In the strong scaling study, performance for the ray casting phase proves to be linear up
to a 216,000-way concurrency with PT (see Fig. 4). The PH implementation exhibited different
scaling behavior because of its different decomposition geometry: the PT data blocks had a
perfectly cubic decomposition, but the PHversion uses 1 × 2 × 3 cubic blocks, resulting in a
larger rectangular block than in the PT version (see Howison et al. 2011 [15], Table 4, for
additional details). The smaller size of the GPU cluster limited the feasible concurrencies for
the hybrid/CUDA implementation, leading to similarly irregular blocks in that case.

The interaction of the decomposition geometry and the camera direction determines the
maximum number of ray integration steps, which is the limiting factor for the ray casting
time. At lower concurrencies, this interaction benefited the PH implementation by as much
as 11% (see Howison et al. 2011 [15], Table 4). At higher concurrencies, the trend flips and
the PT implementation outperforms the PHone by 10% in the ray casting phase. The authors
expected that if they were able to run the PH implementation with cubic-shaped data blocks
(such as 2 × 2 × 2 on an eight-core system), the ray casting phase of both implementations
would scale identically. They also note that at 216,000 cores, ray casting is less than 20% of the
total runtime (see Fig. 6), and the PH implementation is over 50% faster because of gains in the
compositing phase, which is the subject of the next subsection.

For weak scaling, the PH implementation maintained 80% scalability out to 216,000 cores.
Overall ray casting performance is only as fast as the slowest thread. And because of perspective
projection, the number of samples each thread must calculate varies. This variation becomes
larger at a higher concurrency, since each core is operating on a smaller portion of the overall
view frustum, which accounts for the 20% degradation.

The PT result at a 216,000-way concurrency appears (misleadingly) to be superlinear, but
that is because the authors could not maintain the data size per core. Although they could
maintain it for the weak-data set scaling, increasing the image size to 230403 in the weak scaling
study caused the temporary buffers for the image fragments (the output of the ray casting
phase) to overflow. To accommodate the fragment buffer, the authors scaled down to a data
size of 192003 (7.1 trillion cells), instead of the 230403 data size (12.2 trillion cells) used for the

10

 0

 20

 40

 60

 1728
 13824

 46656

 110592

 216000

G
ho

st
 D

at
a

(G
B

)

Strong Scaling

PT

PH

 0

 400

 800

 1200

 1600

 1728
 13824

 46656

 110592

 216000

G
ho

st
 D

at
a

(G
B

)

CPU Cores

Weak Scaling

Figure 3: Because it uses fewer and larger data blocks, the PHvolume renderer requires 40% less
memory for ghost data than the P T implementation. As a result, the PHcode uses less interprocessor
communication for ghost data exchange than the P Tversion. Image source: Howison et al., 2011 [15].

PHruns. The results show the measured values for this smaller data size, and also, estimated
values for the full data size, assuming linear scaling by the factor 230403/192003.

For the weak-data set scaling study, the expected scaling behavior is neither linear nor
constant, since the amount of work for the ray casting phase is dependent on both data size and
image size. With a varying data size but fixed image size, the scaling curve for weak-data set
scaling should lie between those of the pure weak and pure strong scaling, which is what they
observe. Overall, 216,000-way concurrency was 10× faster than 1,728-way concurrency.

2.4.4 Compositing

Above 1,728-way concurrency, the study reveals that compositing times are systematically better
for the PH implementation (see Howison et al. [15], Figure 7). The compositing phase has two
communication costs: (1) the MPI Alltoallv call that exchanges fragments from the task where
they originated during ray casting to the compositing task that owns their region of image
space; and (2) the MPI Reduce call that reduces the final image components to the root task for
assembly and output to a file or display. (See Fig. 6 for a breakdown of these costs.) During
the fragment exchange, the PH implementation can aggregate the fragments in the memory,

11

 1

 2

 4

 8

 27

 64

 125

 1728
 13824

 46656

 110592

 216000

56 112 224 448

R
ay

ca
st

in
g

Sp
ee

du
p

CPU Cores

Strong ScalingGPUs

Linear
PT

PH/pthreads
PH/OpenMP

PH/CUDA

 1

 2

 4

 8

 16

 32

 1728
 13824

 46656

 110592

 216000

R
ay

ca
st

in
g

Sp
ee

du
p

CPU Cores

Weak-dataset Scaling

Linear
Constant

PT

PH/pthreads
PH/OpenMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1728
 13824

 46656

 110592

 216000

56 112 224 448

R
ay

ca
st

in
g

Sp
ee

du
p

CPU Cores

Weak ScalingGPUs

*

Constant
PT (measured)
PT (estimated)

PH/pthreads
PH/OpenMP

PH/CUDA

Figure 4: The speedups (referenced to 1,728 cores) for both the ray casting phase and the total
render time (ray casting and compositing). The ray casting speedup is linear for the P Tversion, but
is sublinear for the PHversion: this effect is caused by the difference in decomposition geometries
(cubic vs. rectangular). Image source: Howison et al., 2011 [15].

shared by all worker threads, in this case six threads, and therefore, it uses on average about 6×
fewer messages than the PT implementation (see Fig. 5). In addition, the PH implementation
exchanges less fragment data because its larger data blocks allow for more compositing to take
place during ray integration. Similarly, one-sixth as many PHtasks participate in the image
reduction, which leads to better performance.

2.4.5 Overall Performance

In the strong scaling study at a 216,000-way concurrency, the best compositing time with
PH(0.35 seconds, 4500 compositors) was 3× faster than with PT (1.06 seconds, 6750 composi-
tors). Furthermore, at this scale, compositing time dominated rendering time, which was roughly
0.2 seconds for both implementations. Thus, the total render time was 2.2× faster with PH(0.56

12

 0

 5

 10

 15

 20

 25

 1728
 13824

 46656

 110592

 216000

D
at

a
Se

nt
 (G

B)

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

 1728
 13824

 46656

 110592

 216000

M
es

sa
ge

s

Strong Scaling

 0

 5

 10

 15

 20

 25

 1728
 13824

 46656

 110592

 216000

D
at

a
Se

nt
 (G

B)

0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

1.6e+06

 1728
 13824

 46656

 110592

 216000

M
es

sa
ge

s

W
eak-dataset Scaling

 0

 100

 200

 300

 400

 500

 600

 700

 1728
 13824

 46656

 110592

 216000

D
at

a
Se

nt
 (G

B)

CPU Cores

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

3.0e+06

3.5e+06

4.0e+06

 1728
 13824

 46656

 110592

 216000

M
es

sa
ge

s

W
eak Scaling

CPU Cores

PT

PH/OpenMP
PH/pthreads

Figure 5: Comparison of the number of messages and total data sent during the fragment exchange
in the compositing phase for PHand P T runs. The PHversion uses fewer messages and requires less
total communication during compositing than the P T implementation. Image source: Howison et
al., 2011 [15].

seconds vs. 1.25 seconds). Overall, the strong scaling study shows that the advantage of PHover
PT becomes greater as the number of cores increases (Fig. 6), primarily due to the PH ’s faster
compositing time.

For weak-data set and weak scaling, PHstill shows gains over the PT , but they are less
pronounced because the ray casting phase dominates. Although the 216,000-way breakdown for
weak scaling looks like it favors PT , this is actually an artifact of the reduced data size (192003);
a reduced size data set was required for the PT implementation to avoid out-of-memory errors.
Comparing an estimated value for a 230403 PT data size suggests that the PH implementation

13

 0

 20

 40

 60

 80

 100

Strong Scaling

 1,728 13,824 46,656 110,592 216,000
25.3

22.9 22.8
3.6

3.2 3.2

1.5

1.2 1.2

1.2

0.7 0.7

1.2

0.6 0.6

 0

 20

 40

 60

 80

 100

Pe
rc

en
t o

f P
T T

im
e

W
eak-data Scaling

25.3
22.9 22.8

7.9
7.4 7.4

4.1
3.8 3.8

2.9

2.5 2.5

2.6

1.9 1.9

 0

 20

 40

 60

 80

 100

P T P H
/OpenMP

P H
/pthreads

P T P H
/OpenMP

P H
/pthreads

P T P H
/OpenMP

P H
/pthreads

P T P H
/OpenMP

P H
/pthreads

P T P H
/OpenMP

P H
/pthreads

W

eak Scaling

*

* Estimated

25.3
22.9 22.8

28.1
26.1 26.1

29.8
28.1 28.0

32.0
29.9 29.9

34.0*
32.0 31.8

Raycasting Compositing - Alltoallv Compositing - Reduce Compositing - Other

Figure 6: Total render time in seconds split into ray casting and compositing components and nor-
malized at each concurrency level as a percentage of the distributed-memory time. “Compositing-
Other” includes the time to coordinate the destinations for the fragments and to perform the over
operator. Image source: Howison et al., 2011 [15].

would be slightly faster.
On Longhorn, using 448 GPUs and processing the 46083 data set, the hybrid/CUDA im-

plementation averaged 1.18 seconds for ray casting and exhibited a minimum compositing time
of 0.15 seconds (with a median of 0.19 seconds). The ray casting performance positions this
run close to the 46,656-way run on JaguarPF (see Howison et al. 2011 [15], Fig. 10). How-
ever, the compositing time for the hybrid/CUDA run on Longhorn (0.15 seconds) is half that
of hybrid-memory runs at the 46,656-way concurrency on JaguarPF (0.31–0.33 seconds).

This result from Longhorn points more generally to the increasing potential of PH for ray
casting volume rendering at higher core-to-node ratios. The shared-memory parallelism used
by the dynamically-scheduled, image-based decomposition in the ray casting phase, scales well
to high concurrencies per node—up to thousands of threads in the case of CUDA. In turn,
decreasing the absolute number of nodes improves the communication performance during the
compositing phase.

14

Figure 7: Integral curve computation lies at the heart of visualization techniques like streamlines,
which are very useful for seeing and understanding complex flow-based phenomena. This image
shows an example from computational thermal hydraulics. Algorithmic performance is a function
of many factors, including the characteristics of the flow field in the underlying data set. Image
courtesy of Hank Childs and David Camp (LBNL).

3 Hybrid Parallelism and Integral Curve Calculation

3.1 Background and Context

There are two primary ways of performing a parallel IC computation: parallelize over data
blocks (POB), and parallelize over seeds (POS). In POB, data is divided and distributed as
evenly as possible across all processors. Each processor computes ICs that fall within the data
block it owns. As an IC leaves one data block, a processor must communicate the IC to another
processor, where the IC computation will continue. In POS, the IC’s themselves are distributed
as evenly as possible among processors, and each processor computes an entire IC, loading data
blocks as needed.

This study focuses on how each of these two classes of algorithms differ between PT and
PH implementation and presents the results from a study that explores the characteristics of
each [7]. Considering limits to scalability, this study evaluates performance in terms of absolute
runtime, the amount of data moved at runtime between processors, the amount of I/O required
by each configuration, and load balance characteristics.

15

PT Ncore / Node 1 / NodePH

receive

send

COMM
INT

Other MPI
Tasks

Other MPI
Tasks

receive

send

INTINTINT

COMM
INT

Ncore-1 worker threads

Thread Data Block Active Streamline (can integrate on the resident blocks) Inactive Streamline

Cache Cache

Figure 8: Comparison of P T (left) and PH(right) implementations of the parallelize-over-seeds
algorithm. In the P Tversion, each task performs the IC computation, an integration (INT), and
manages its own cache by loading blocks from a disk (I/O), whereas Ncore worker threads share a
cache in the PH implementation. In the PHversion, multiple I/O threads manage the cache and
observe which ICs can (active) and cannot (inactive) continue with the resident data blocks. Future
blocks to load are determined from the list of inactive ICs. MPI communication, not shown here,
is limited to gathering results. Image source: Camp et al., 2011 [7].

3.2 Design and Implementation

3.2.1 Parallelize Over Seeds

The parallelize-over-seeds (POS) algorithm assigns 1/n of the IC seeds to each parallel task.
Each task will then perform a numerical integration over its seed set, loading data blocks as
needed. In general, the POS algorithm does not require any inter-task communication at run-
time, although it may incur redundant data block loads if the ICs in different tasks enter the
same data block. Figure 8 provides an overview of both PT and PH implementations of this
algorithm.

In the PT version, a single thread, corresponding to the task’s process, performs all opera-
tions: data block I/O and IC integration. There is a single queue containing the ICs that are
owned by a task. A task will begin work on the IC at the head of the queue, load any data
blocks needed for the IC’s current location, and continue integration until the IC exits all data
blocks currently in the task’s cache. At that point, that IC goes to the tail of the queue, and
processing resumes on the IC now at the head of the queue. This process repeats until all ICs
have been integrated.

In contrast, the PH implementation maintains ICs in two sets, or queues. ICs in the
active set can be integrated using the blocks currently residing in the cache, while inactive
ICs require access to data blocks not resident in the cache for computation to proceed. The
PH implementation uses two pools of threads for execution. In the first thread pool, I/O threads
identify which data blocks need to be loaded to satisfy the needs of the IC calculation in the
inactive set, and then, initiate I/O if there is room in the cache. After a block is loaded, the ICs
waiting on it are migrated to the active set. In the second thread pool, a worker thread fetches
ICs from the active set, performs integration on each one using the cached data blocks, and
then retires them to the inactive set when the IC exits all currently loaded data block domains.
ICs for which integration has been completed, are sent to a separate list and the algorithm ter-
minates once both active and inactive sets are empty. Access to active and inactive sets, as well
as the block cache, is synchronized through standard mutex and condition variable primitives.

The performance of the POS scheme depends primarily on the data loads and cache size
Nblocks; if the cache is too small, blocks must be repeatedly brought in from external storage.
Recent work has studied the effects of alternate strategies for caching data blocks in systems
with an extended memory hierarchy [6]. The idea is to expand the data block cache into a two-
level hierarchy that would include both primary memory, as discussed here, as well as node-local

16

PT Ncore / Node 1 / NodePH

I/O
INT

INTINTINTINT
Ncore worker threads

Thread Data Block Active Streamline (can integrate on the resident blocks) Inactive Streamline

I/OI/OI/OI/O
Ncore I/O threads

Cache

Cache

Figure 9: Comparison of P T (left) and PH(right) implementations of the parallelize over blocks
algorithm. In the P Tversion, each task performs the IC computation, an integration (INT), and
communicates with other tasks to send and receive streamlines as they leave or enter different data
partitions (COMM). In the PHversion, Ncore − 1 worker threads perform IC computation over a
set of data blocks. There is one additional thread that performs both IC computation, as well as
communication operations. I/O is limited to an initial load of data blocks assigned to each task.
Image source: Camp et al., 2011 [7].

storage devices, such as a local hard drive or a local solid-state drive.
The PH implementation has three main advantages over the PT version: (1) the PHversion

will have a larger shared cache and will perform less redundant I/O; (2) when a significant num-
ber of ICs are inside the same data block, each PT task must load that block separately, whereas
the PHversion will perform only one read and immediately share it among its threads; and, (3)
since I/O and IC integration are performed by separate thread pools, those two operations can
execute asynchronously and simultaneously—algorithm performance will likely improve as long
as I/O and IC integration can proceed concurrently.

3.2.2 Parallelize Over Blocks

The parallelize-over-blocks (POB) algorithm assigns 1/n of the data blocks to each parallel task.
Seed points for each IC are distributed to the tasks that own the data block containing the
location of the seed. Tasks then perform numerical integration of each IC. When an IC exits a
data block owned by a task, the IC is sent to the task that owns the data block where the IC
will go next. (The processing details are explained in the original study [7].) Figure 9 shows an
overview of both the PT and PH implementations for this algorithm.

The POB algorithm performs minimal I/O: before integration commences, every task loads
all blocks assigned to it, leveraging maximal parallel I/O bandwidth. The trade-off is a recur-
ring inter-task communication phase, where ICs are exchanged between tasks as they migrate
through the computational domain during integration.

As in POS algorithm, the PT version consists of a single thread that maintains a set of ICs
to integrate. Each thread performs integration of ICs that lie within the spatial region of data
blocks in the cache.

The PH implementation maintains ICs in two queues. Newly received ICs are stored in
the active queue, where workers fetch from it, integrate, and put ICs in the inactive queue
when they exit the data blocks loaded by this task. From there, the ICs are sent off to other
tasks by the supervisor thread, or retired to a separate list when complete. All tasks’ supervisor
threads also maintain a global count of active and complete ICs to determine when to terminate.
Synchronization between threads is performed as in the POS implementation.

17

3.3 Experiment Methodology

3.3.1 Factors Influencing Parallelization Strategy

The parallel IC problem is complex and challenging. To design an experimental methodology
that provides robust coverage of different aspects of algorithmic behavior (some of which is data
set dependent), one must take into account several factors that influence parallelization strategy
in designing an effective and robust performance test design methodology.

3.3.2 Test Cases

To cover a wide range of potential problem characteristics, this study uses four tests that address
all combinations of seed set size (small or large) and seed point distribution (sparse or dense)
for each of the three data sets.

The three data sets come from computational applications to astrophysics, fusion, and ther-
mal hydraulics.

In the thermal hydraulics simulation, twin inlets pump water into a box, with a temperature
difference between the water inserted by each inlet. Eventually, the water exits through an outlet.
The mixing behavior and the temperature of the water at the outlet are of interest. Suboptimal
mixing can be caused by long-lived recirculation zones that effectively isolate certain regions of
the domain from heat exchange. The simulation was performed using the Nek5000 code [12]
on an unstructured grid comprised of twenty-three million hexahedral elements. Streamlines
are seeded according to two application scenarios. First, sparse seeds are distributed uniformly
through the volume to show areas of high velocity, areas of stagnation, and areas of recirculation.
Second, seeds are placed densely around one of the inlets to examine the behavior of particles
entering through it. The resulting streamlines illustrate the turbulence in the immediate vicinity
of the inlet. Small seed sets contain 1,500 seed points with an integration time of 12 units and
the large sets consist of 6,000 seed points propagated for 3 time units. Figure 7 shows the
streamlines computed for this data set.

3.3.3 Runtime Environment

The study conducted all tests on the NERSC Cray XT4 system Franklin. The 38,288 proces-
sor cores available for scientific applications are provided by 9,572 nodes, equipped with one
quad-core AMD Opteron processor and 8GB of memory (2GB per core). Compute nodes are
connected through HyperTransport for high performance, low-latency communication for MPI
and SHMEM jobs. This platform supports parallel I/O, via a Lustre file system, which provides
access to approximately 436TB of user disk space.

The authors implemented the two PHalgorithms into the VisIt [1, 9] visualization system,
which is available on Franklin and routinely used by application scientists. PT variants of both
POB and POS algorithms were already implemented in recent VisIt releases and were also
instrumented to provide the measurements discussed below.

The authors ran each benchmark run using 128 cores (32 nodes). For the PT algorithm
tests, they used 128 MPI tasks, one per core. The PHtest configuration was such that the
total number of worker threads over all nodes was 128. One configuration, for example, used
32 MPI tasks, one per node, with each MPI task, in turn, spawning four worker threads. Note,
the additional I/O or communication thread running per-MPI task in the PHapproach is not
counted in this scheme; here, the study focuses on employing a constant number of worker
threads for performing actual integration work to determine the impact of PH .

3.3.4 Measurements

While absolute runtime is important, the authors added an instrumentation code so as to obtain
more fine-grained information about different algorithmic steps. The steps include, for instance,
the start and end of integration for a particular IC for worker threads, the begin and end of

18

an I/O operation for corresponding threads, and time spent performing communication using
MPI calls. Timestamps are taken as elapsed wall-clock time since the start of the MPI task.
These event logs are carefully implemented to a have negligible impact on the overall runtime
behavior.

The pure integration time, Tint, represents the actual computational workload and it is the
sum of all times taken by the worker threads to perform the IC computation. This time should
be almost independent across all runs for a specific test case, since the integration workload in
terms of the number of integration steps taken over all ICs is identical in each case. Similarly,
TI/O and Tcomm contain time spent doing I/O and communication, respectively. To gain a
deeper insight into the role of the block cache, the authors count the number of blocks loaded,
Nload, and purged, Npurged. The amount of MPI communication between tasks in bytes is shown
as Ncomm. Finally, as a derived measure of efficiency, they examine the integration ratio, Rint,
as the fraction of the total algorithm runtime that was used to compute ICs.

In total, twelve tests of the form X(YZ) were run per algorithm in hybrid and non-hybrid
variants, where X indicates the data set (Astro, Thermal Hydraulics, Fusion), Y denotes the
seed set size (Large or Small), and Z denotes the seed set density (Sparse or Dense).

3.4 Results

Overall, the results show that for each of the two parallelization approaches, PHhas better
performance characteristics than its PT counterpart. However, the reasons for the performance
differences vary between the different parallelization approach.

3.4.1 Parallelization Over Seeds

A PH POS algorithm has three fundamental advantages:
Larger data cache. Both the PHand PT algorithms use a memory-based cache to store data

blocks/domains for later reuse to avoid performing redundant I/O. For the PHcase, the cache
is shared amongst worker threads, hence, the worker threads can be larger than the PT cache by
an amount proportional to the threading factor. For these experiments, the PHcache was four
times larger than the PT cache, though cache size is a runtime, tunable parameter. Figure 10
shows that in all cases, the PHversion loads fewer data blocks than its PT counterpart for each
given problem.

Avoids redundant I/O. For the PT algorithm, when multiple tasks on the same node need
to access the same data block, they must each read the same data block from disk. In effect,
they are performing redundant loads of the same data block into the same node’s memory. In
the PHcase, only a single read is required and the data block is shared between all threads.
This use case occurs frequently when the seed points are densely located in a small region. On
average, the PHversion loads 64% less data than the PT version. Figure 10 is a graph showing
the number of data block loads.

Better load balancing. The time to calculate each IC varies from curve to curve because of
the data dependent nature of the advection step. The study refers to ICs that take longer to
compute as “slow ICs.” Since ICs are permanently assigned to tasks, the tasks that process
slow ICs will take longer to execute. Towards the end of the calculation, the tasks with slow
ICs will still be executing, while the tasks with fast ICs will be finished, meaning there is
a relatively poor load balance. Figure 11 shows that the PH implementation has less load
imbalance between tasks. With the PH implementation, a larger number of ICs are shared
between the worker threads, which creates a more even distribution of slow ICs. For example,
if a task in the PT case received many slow ICs, there is only one thread to handle them. In
the PHcase, there will be more worker threads to advance these slow ICs.

3.4.2 Parallelization Over Blocks

A PH POB algorithm has two fundamental advantages:

19

Better load balancing. Because data is partitioned over tasks, the only task that can ad-
vance a given IC is the task that owns the data block in which the IC resides. When
many ICs traverse the same block, the corresponding task becomes a bottleneck. With the
PHalgorithm, more tasks can be used to relieve the bottleneck. Figure 13 illustrates this point.
The PT implementation has only two tasks working on the longest ICs, which translates to two
cores. The PH implementation also has two tasks working on these ICs, but since each task has
four worker threads, that equates to a total of eight worker threads vs. two worker threads for
the PT implementation. The additional workers allow the PHcase to finish more quickly. This
factor can be quantified by measuring the percentage of time each core spends doing integra-
tion. The integration ratio Rint is very low for both implementations, but it is higher for the
PH implementation.

Less communication. The communication cost of moving ICs between MPI processes is much
lower in most of the PHcases of the POB method, which can be seen in the communication
time and data transmitted between tasks (see Fig. 12). The PHPOB implementation has four
times fewer tasks than PT . Since each PHtask holds four times more data, it is less likely to
send the IC to another task, which results in less overall inter-task communication.

4 Conclusion and Future Work

The two studies presented in this report, both of which compare the performance of traditional
MPI-only with MPI-hybrid implementations of two staple visualization algorithms, reveal a
consistent theme: on current multi- and many-core platforms, the MPI-hybrid design and im-
plementation enjoys clear performance advantages.

First, both MPI-hybrid implementations require a significantly smaller memory footprint at
initialization. Per-chip MPI overhead, in the form of internal buffers and so forth, expands as
a function of the number of per-core MPI tasks, and, as the volume rendering study shows,
a difficult-to-predict scaling factor that is likely related to how vendors implement MPI. Ex-
trapolating from the volume rendering study results shown here, it seems clear that continuing
along the path of an MPI-only implementation will eventually exhaust all available memory at
extreme concurrency simply for the application initialization. The implication is clear: future
high performance visual data analysis and exploration applications must, by necessity, use some
form of hybrid-parallel design to make effective use of computational platforms, comprised of
multiple or many cores per chip.

Second, the MPI-hybrid implementations perform significantly less inter-chip communica-
tion. The reasons for the lighter communication load vary, depending on the algorithm, and in
some cases the particular problem or data set. Nonetheless, one common trait that results in
less communication is the fact that the hybrid-parallel implementations use multiple processing
threads, typically one per core, that all have access to a common shared memory. Communica-
tion between processing threads on a CPU that has global shared memory visible to all its cores
takes place through that memory. And, depending on the underlying shared-memory program-
ming model, that communication can take place without any operating system or MPI overhead
like message buffering and so forth. A second common trait concerns the use of ghost zones.
With a data decomposition consisting of smaller and more data partitions, there is more surface
area compared to a decomposition that results in fewer and larger data partitions. Less surface
area means there is less information—ghost zones—that needs to be communicated during the
course of processing. The MPI-only configuration results in more and smaller data partitions
compared to the MPI-hybrid configurations.

In the future, all trends suggest computational platforms comprised of an increasing number
of cores per chip. One unknown is whether or not those future architectures will continue to
support a shared memory that is visible to all cores. The present hybrid-parallel implementations
perform well because all threads have access to a single shared memory on a CPU chip. If future
architectures eliminate this shared memory, future research will need to explore alternative
algorithmic formulations and implementations that both exploit available architectural traits as

20

well as achieve low memory footprint utilization and reduced communication when compared
to traditional, MPI-only designs and implementations.

21

2x

4x

6x

8x

10x

12x

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

PT PH Integration Ratio

6%

13%

19%

26%

32%

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

 MPI-only MPI-hybrid

3%

5%

8%

10%

13%

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

 PT PH

Parallelize over Blocks
Improvement MPI-Hybrid over MPI-only

Parallelize over Seeds
 Improvement PH over PT

Integration RatioIntegration RatioIntegration Ratio
MPI-Hybrid over MPI-only

1x

2x

3x

4x

5x

6x

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

 MPI-only MPI-hybrid Integration Ratio

11MB

22MB

33MB

44MB

55MB

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

 MPI-only MPI-hybrid

10K

20K

30K

40K

50K

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

PT PH

Blocks LoadedBytes Communicated

Figure 10: Comparison of PHand P Tperformance for the parallelize-over-seeds IC computation
approach. the PHversion is faster in all cases because fewer blocks are loaded, allowing for an
increased integration ratio, along with better load balancing due to there being more processors to
work on a given number of ICs. (See 3.2.1 for a detailed discussion.) Image source: Camp et al.,
2011 [7]. 22

PTPH

IntegrationI/O

Figure 11: This Gantt chart shows a comparison of integration and I/O performance/activity of
the parallelize-over-seeds P T and PHversions for one of the benchmark runs. Each line represents
one thread (left column) or task (right column). The PHapproach outperforms the P T one by
about 10×, since the four I/O threads in the PHcan supply new data blocks to the four integration
threads at an optimal rate. However, work distribution between nodes is not optimally balanced.
In the P T implementation, the I/O wait time dominates the computation by a large margin, due
to redundant data block reads, and work being distributed less evenly. This can be easily seen in
the enlarged section of the Gantt chart. (See Section 3.2.1 for more details.) Image source: Camp
et al., 2011 [7].

23

2x

4x

6x

8x

10x

12x

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

 MPI-only MPI-hybrid Integration Ratio

6%

13%

19%

26%

32%

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

PT PH

3%

5%

8%

10%

13%

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

 MPI-only MPI-hybrid

Parallelize over Blocks
 Improvement PH over PT

Parallelize over Seeds
Improvement MPI-Hybrid over MPI-only

Integration RatioIntegration RatioIntegration Ratio
MPI-Hybrid over MPI-only

1x

2x

3x

4x

5x

6x

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

PT PH Integration Ratio

11MB

22MB

33MB

44MB

55MB

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

PT PH

10K

20K

30K

40K

50K

 A(LD) A(LS) A(SD) A(SS) T(LD) T(LS) T(SD) T(SS) F(LD) F(LS) F(SD) F(SS)

 MPI-only MPI-hybrid

Blocks LoadedBytes Communicated

Figure 12: Performance comparison of the PHand P Tvariants of the parallelize-over-blocks algo-
rithm. The PHversion has a much lower runtime for each test due to better load balancing, and
because less communication enables a higher integration ratio. (See Section 3.2.2 for a detailed
discussion.) Image source: Camp et al., 2011 [7].24

PH
PT 2 tasks

integrating

8 threads
integrating

IntegrationI/O MPI Send MPI Recv

Figure 13: This Gantt chart shows a comparison of integration, I/O, MPI Send, and MPI Recv

performance/activity of the parallelize-over-blocks P T and PHversions for one of the benchmark
runs. Each line represents one thread (top) or task (bottom). The comparison reveals that the
initial I/O phase, using only one thread, takes about 4× longer. The successive integration is faster,
since multiple threads can work on the same set of blocks, leading to less communication. Towards
the end, the eight threads are performing IC integration in the PHapproach, as opposed to only
two tasks in the P Tmodel. (See Section 3.2.2 for more details.) Image source: Camp et al., 2011 [7].

25

References

[1] VisIt – Software that delivers Parallel, Interactive Visualization.
http://visit.llnl.gov/.

[2] C. Bajaj, I. Ihm, G. Joo, and S. Park. Parallel Ray Casting of Visibly Human on Distributed
Memory Architectures. In VisSym ’99 Joint EUROGRAPHICS-IEEE TVCG Symposium
on Visualization, pages 269–276, 1999.

[3] E. Wes Bethel, Hank Childs, and Charles Hansen, editors. High Performance
Visualization—Enabling Extreme-Scale Scientific Insight. Chapman & Hall, CRC Com-
putational Science. CRC Press/Francis–Taylor Group, Boca Raton, FL, USA, November
2012. http://www.crcpress.com/product/isbn/9781439875728.

[4] OpenMP Architecture Review Board. OpenMP Application Program Interface Version 3.1,
July 2011. http://www.openmp.org/wp/openmp-specifications.

[5] David R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1997.

[6] David Camp, Hank Childs, Amit Chourasia, Christoph Garth, and Kenneth I. Joy. Eval-
uating the Benefits of an Extended Memory Hierarchy for Parallel Streamline Algorithms.
In Proceedings of the IEEE Symposium on Large-Scale Data Analysis and Visualization
(LDAV), Providence, RI, USA, October 2011.

[7] David Camp, Christoph Garth, Hank Childs, Dave Pugmire, and Ken Joy. Streamline
Integration Using MPI-Hybrid Parallelism on a Large Multi-Core Architecture. IEEE
Transactions on Visualization and Computer Graphics, 17(11):1702–1713, November 2011.

[8] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and Ramesh
Menon. Parallel Programming in OpenMP. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2001.

[9] Hank Childs, Eric S. Brugger, Kathleen S. Bonnell, Jeremy S. Meredith, Mark Miller,
Brad J. Whitlock, and Nelson Max. A Contract-Based System for Large Data Visualization.
In Proceedings of IEEE Visualization, pages 190–198, 2005.

[10] NVIDIA Corporation. What is CUDA? http://www.nvidia.com/object/what_is_cuda_

new.html, 2011.

[11] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. SIGGRAPH
Computer Graphics, 22(4):65–74, 1988.

[12] P. Fischer, J. Lottes, D. Pointer, and A. Siegel. Petascale Algorithms for Reactor Hydro-
dynamics. Journal of Physics: Conference Series, 125:1–5, 2008.

[13] Khronos Group. OpenCL – The Open Standard for Parallel Programming of Heterogeneous
Systems. http://www.khronos.org/opencl/, 2011.

[14] Mark Howison, E. Wes Bethel, and Hank Childs. MPI-hybrid Parallelism for Volume
Rendering on Large, Multi-core Systems. In Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV), Norrköping, Sweden, May 2010. LBNL-3297E.

[15] Mark Howison, E. Wes Bethel, and Hank Childs. Hybrid Parallelism for Volume Render-
ing on Large, Multi- and Many-core Systems. IEEE Transactions on Visualization and
Computer Graphics, 99(PrePrints), 2011.

[16] Marc Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics and Appli-
cations, 8(3):29–37, May 1988.

[17] Kwan-Liu Ma. Parallel Volume Ray-Casting for Unstructured-Grid Data on Distributed-
Memory Architectures. In PRS ’95: Proceedings of the IEEE Symposium on Parallel
Rendering, pages 23–30, New York, NY, USA, 1995. ACM.

[18] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh. A Data
Distributed, Parallel Algorithm for Ray-Traced Volume Rendering. In Proceedings of the
1993 Parallel Rendering Symposium, pages 15–22. ACM Press, October 1993.

26

[19] Jason Nieh and Marc Levoy. Volume Rendering on Scalable Shared-Memory MIMD Ar-
chitectures. In Proceedings of the 1992 Workshop on Volume Visualization, pages 17–24.
ACM SIGGRAPH, October 1992.

[20] NVIDIA Corporation. NVIDIA CUDATM Programming Guide Version 3.0, 2010. http:

//developer.nvidia.com/object/cuda_3_0_downloads.html.

[21] Thomas Porter and Tom Duff. Compositing Digital Images. Computer Graphics, 18(3):253–
259, 1984. Proceedings of ACM/Siggraph.

[22] Dave Pugmire, Hank Childs, Christoph Garth, Sean Ahern, and Gunther H. Weber. Scal-
able Computation of Streamlines on Very Large Datasets. In Proceedings of Supercomputing
(SC09), Portland, OR, USA, November 2009.

[23] Paolo Sabella. A Rendering Algorithm for Visualizing 3D Scalar Fields. SIGGRAPH
Computer Graphics, 22(4):51–58, 1988.

[24] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI –
The Complete Reference: The MPI Core, 2nd ed. MIT Press, Cambridge, MA, USA, 1998.

[25] R. Tiwari and T. L. Huntsberger. A Distributed Memory Algorithm for Volume Rendering.
In Scalable High Performance Computing Conference, Knoxville, TN, USA, May 1994.

[26] The Top 500 Supercomputers, 2011. http://www.top500.org.

[27] Craig Upson and Michael Keeler. V-buffer: Visible Volume Rendering. In SIGGRAPH
’88: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive
Techniques, pages 59–64, New York, NY, USA, 1988. ACM.

27

